MANUAL DE INSTRUÇÕES Multímetro Digital Incoterm

- CAT III 1000V
- CAT IV 600V

Modelo: MD430

Visão Geral

Este Manual de Instruções cobre informações sobre segurança e precauções. Favor ler as informações relevantes com cuidado e observar estritamente todos os Avisos e Observações.

Aviso

Para evitar choque elétrico ou dano pessoal, leia cuidadosamente as "Informações de Segurança" antes de utilizar o Medidor.

O Multímetro Digitial Incoterm MD430 instrumento com 4000 contagens de escala automática digital de desempenho estável, alta confiabilidade e proteção de sobrecarga para todas as faixas. O Medidor é projetado com circuitos integrados em larga escala e conversor A/D integral duplo como núcleo, que pode medir tensões AC/DC, correntes AC/DC, resistência, díodo, continuidade, capacitância, ciclo de operação (duty cycle)/freqüência e temperatura. É moldado de forma dupla para que o gabinete assegure isolamento perfeito e oferece a função visor com luz de fundo para facilitar as medições em locais escuros. Todas as funções combinadas em um único instrumento fazem do Multímetro Digital Incoterm MD-430 uma ferramenta perfeita.

Inspeção de Desembalagem:

Abra a caixa e retire o Medidor. Verifique cuidadosamente os seguinte itens para detectar peças faltando ou danificadas:

Item	Descrição	Quantidade
1	Manual de Instruções	1 pc
2	Pontas de prova	1 par
3	Pontas de prova tipo jacaré	1 par
4	Sonda de Temperatura	1 pc
5	Bateria 9V (NEDA 1604, 6F22 ou 006P)	1 pc

No caso de encontrar alguma peça faltando ou danificada, favor entrar em contato imediatamente com o seu revendedor.

Informações de Segurança:

Este Medidor está em conformidade com Grau de Poluição 2 IEC 61010, categoria de sobre tensão CAT. III 1000V, CAT. IV 600V e duplo isolamento.

CAT. III: Nível de distribuição, instalação fixa, com sobre tensão transitória menor do que CAT. IV

CAT. IV: Nível de fornecimento primário, catenárias, sistemas de cabo, etc.

Utilizar o Medidor apenas conforme especificado neste manual de instruções, caso contrário a proteção fornecida pelo Medidor pode ser prejudicada.

Neste manual, um Aviso identifica condições e ações que podem causar danos ao usuário, ou danificar o Medidor ou o equipamento sendo testado.

Uma Observação identifica as informações em que o usuário deve prestar atenção

Aviso

Para evitar possível choque elétrico ou dano corporal e para evitar possíveis danos ao Medidor ou equipamento sendo testado, siga às seguintes regras:

- Antes de utilizar o Medidor, inspecione o gabinete. Não utilize o Medidor se estiver danificado ou se o gabinete (ou parte do gabinete) estiver removido. Procure por rachaduras ou plástico faltando. Preste atenção ao isolamento em torno dos conectores.

- Inspecione as pontas de prova para detectar a presença de isolamento danificado ou metal exposto. Verifique a continuidade das pontas de prova. Substitua as pontas de prova danificadas com número de modelo idêntico ou especificações elétricas antes de utilizar o Medidor.
- Não aplique mais do que a tensão nominal, conforme marcado no Medidor, entre os terminais ou entre qualquer terminal e o terra.
- O interruptor rotativo deve ser colocado na posição correta e nenhuma mudança de faixa deve ser feita quando a medição estiver sendo conduzida para prevenção do Medidor.
- Quando o Medidor estiver em funcionamento em uma tensão efetiva acima de 60V em DC ou 30V em AC, devese ter um cuidado especial pois há risco de choque elétrico.
- Utilize os terminais, função e faixas adequadas para as suas medições.
- Não use ou guarde o Medidor em um ambiente de alta temperatura, umidade, explosivo, inflamável e forte campo magnético. O desempenho do Medidor pode deteriorar depois de úmido.
- Ao utilizar as pontas de prova, mantenha seus dedos atrás das barreiras protetoras.
- Desconecte a alimentação do circuito e descarregue todos os capacitores de alta tensão antes de testar resistência, continuidade, díodos, corrente ou capacitância.
- Antes de medir a corrente, verifique os fusíveis do Medidor e desligue a alimentação do circuito, após conectar o Medidor ao circuito.
- Substitua a bateria assim que o indicador de bateria com carga baixa " " aparecer. Com bateria fraca, o Medidor pode produzir leituras falsas que podem resultar em choque elétrico e danos corporais.

- Remova a ponta de prova, sonda de temperatura, e ponta de prova tipo jacaré do Medidor e o desligue antes de abrir o gabinete.
- Ao colocar o Medidor em serviço, utilize apenas as peças de substituição com o mesmo número de modelo ou especificações elétricas idênticas.
- O circuito interno do Medidor não deve ser alterado arbitrariamente para evitar danos ao Medidor e qualquer tipo de acidente.
- Um pano macio deve ser utilizado para limpar a superfície do Medidor quando estiver em uso. Nenhum abrasivo ou solvente deve ser usado para prevenir a ocorrência de corrosão, desgastes e danificação na superfície.
- O Medidor é indicado para uso interno.
- Em ambiente de alta descarga eletro-estática (+/-4kV), o Medidor não poderá ser operado como em condições normais. Pode ser necessário que o usuário reconfigure o Medidor.
- Favor retirar a bateria quando não estiver sendo utilizado por um longo período para evitar vazamentos na bateria.
- Favor verificar constantemente a bateria, pois pode vazar quando não estiver sendo utilizada por algum tempo, substitua a bateria assim que aparecer vazamento. Uma bateria com vazamento danificará o Medidor.
- Símbolos Elétricos Internacionais

~	AC (Corrente Alternada)	Ö	Indicação de bateria com carga baixa
	DC (Corrente direta)	•1))	Teste de Continuidade
=	AC ou DC	→	Díodo
	Aterramento.	76	Teste de Capacitância
	Isolamento Duplo.	-	Fusível
\triangle	Aviso. Consultar Manual de Instruções	(€	Em Conformidade com as Normas da União Europeia

Descrição do instrumento

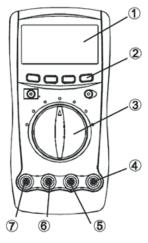


Figura 1

- 1. Visor de cristal líquido
- 2. Botões Funcionais
- 3. Interruptor Rotativo
- 4. Terminal de entrada $HzV\Omega$:

Entrada para medições de tensão, freqüência/ciclo de operação (duty cycle), resistência, díodo, continuidade e capacitância.

5. Terminal de entrada COM:

Terminal de retorno para todas as medições.

6. Terminal de entrada μA mA °C:

Entrada para testes de corrente e temperatura 0,1 μ A a 400,0mA.

7. Terminal de entrada 10A:

Entrada para medições de corrente de 0,01A a 10A.

Interruptor Rotativo

A tabela abaixo oferece informações sobre as posições do interruptor rotativo.

Posição de	Descrição		
Interruptor			
Rotativo			
	Faixa de medição de tensão DC de 400,0mV a 1000V ou		
v≂	Faixa de medição de tensão AC de 4,000V a 750,0V.		
	•II) Teste de continuidade		
•1))))	*		
Teste de díodo			
Ω : Faixa de medição de resistência de 400,0 Ω a 40,00 N			
	₭ Faixa de teste de capacitância de 40,00nF a 100,0µF.		
°C	Temperatura em Celsius de -40°C ~ 1000°C.		
Hz	Faixa de medição de freqüência de 10,00Hz a 10,00MHz.		
μА≂	Faixa de medição de corrente AC ou DC de 400,0 μA a		
	4000μΑ.		
mA≂	Faixa de medição de corrente AC ou DC de 40,00 mA a		
	400,0mA.		
A≂	Faixa de medição de corrente AC ou DC de 4,000A a 10,00A.		

Botões Funcionais

A tabela abaixo oferece informações sobre os botões funcionais.

Botão	Função de Medição	Descrição
LIGAR/DESLIGAR	Qualquer posição do	Liga ou desliga o Medidor.
	interruptor rotativo	
		Alterna as tensões AC e
	∨≂	DC; o Medidor soa um bip.
		DC é o padrão.
		Alterna medições de
		continuidade, díodo,
	•1))▶ Ω- [(resistência e capacitância;
		o Medidor soa um bip.
		Resistência é o padrão.
		Alterna as faixas de
	μA ≂	corrente de AC e DC de
[AZUL]		400,0μΑ a 4000μΑ; ο
		Medidor soa um bip, DC é
		o padrão.

	mA Alterna as faixas de corrente de AC e DC de 40,00mA a 400,0mA; o Medidor soa um bip. De o padrão.	
[AZUL]	A≂	Alterna as faixas de corrente de AC e DC de 4,000A a 10,00A; o Medidor soa um bip. DC é o padrão.
RANGE	Qualquer posição de interruptor rotativo com exceção de Hz e	- Pressione o botão RANGE para entrar no modo de escala manual; o Medidor soa um bip. Selecionar uma escala manualmente faz com que o Medidor saia dos modos de Retenção (HOLD) e REL Pressione o botão RANGE para ter acesso às faixas disponíveis para a função selecionada; o Medidor soa um bip Pressione e segure RANGE por 2 segundos para retornar à escala automática; o Medidor soa um bip.
Hz%	Hz	1. Pressione para iniciar a contagem de freqüência; o Medidor soa um bip. 2. Pressione novamente para entrar no modo de ciclo de operação (duty cycle); o medidor soa um bipe 3. Pressione novamente para retornar ao modo de contagem de freqüência; o Medidor soa um bip

11.07	V≂, μΑ≂ , mΑ≂ Ο∪	Pressione para iniciar a contagem de frequência; o Medidor soa um bip. Pressione novamente para entrar no modo de
Hz%	A≂	ciclo de operação (duty cycle); o Medidor soa um bip. 3. Pressione novamente para retornar ao modo de medição anterior; o Medidor soa um bip.
REL A	Qualquer posição de interruptor rotativo com exceção de Hz	Pressione REL A para entrar e sair do modo REL em qualquer modo de medição exceto no ciclo de operação (duty cycle)/frequência; o Medidor soa um bip.
HOLD H	Qualquer posição de interruptor rotativo	Pressione o botão HOLD para entrar e sair do modo RETER em qualquer modo; o Medidor soa um bip.

Símbolos do Visor

Figura 2

Número	Símbolo	Descrição	
1	AC	Indicador de tensão ou corrente de AC.	
		O valor exibido é o valor médio.	
	AUTO	O Medidor está no modo de escala automática em	
2		que o Medidor seleciona automaticamente a faixa	
		com a melhor resolução.	
3	%	Porcentagem: Usado para medições de ciclo de	
, ,		operação. (duty cycle)	
4	Н	A retenção de dados está ativada.	
5	Λ	O REL está ligado para exibir o valor presente menos	
3		o valor armazenado.	
		A bateria está com carga baixa	
		Aviso: Para evitar falsas leituras, que podem	
6	Û	desencadear possível choque elétrico ou danos	
		corporais, substitua a bateria assim que o indicador	
		de bateria com carga baixa aparecer.	
7	°C	Celsius. A unidade de temperatura.	
8	₩	Teste de díodo	
9	•1))	O alarme de continuidade está ligado.	
	$Ω$, $\mathbf{k}Ω$, $\mathbf{M}Ω$	Ω: Ohm. A unidade de resistência.	
		$\mathbf{k}\Omega$: kilohm, 1 x 10 ³ ou 1000 ohms.	
		M Ω: Megaohm. 1 x 10 ⁶ ou 1.000.000 ohms.	
	F, μF, nF	F: Farad. A unidade de capacitância	
		μF: MicroFarad. 1x10 ou 0,000001	
		nF: nanoFarad. 1x10 ⁻⁹ ou 0,000000001 Farads.	
10 - 14	Hz, kHz, MHz	Hz: Hertz. A unidade de frequência em	
		ciclos/segundo.	
		kHz: Kiloĥertz. 1x10³ ou 1000 hertz	
		MHz: Megahertz, 1x106 ou 1.000.000 hertz.	
	V, mV	V: Volts. A unidade de tensão.	
		mV: milivolt. 1x10 ⁻³ ou 0,001 volts	
	A, mA, μ A,	A: Amper A unidade de corrente.	
mA: miliamp. 1x10 ⁻³ ou 0,001 ampe		mA: miliamp. 1x10 ⁻³ ou 0,001 amper.	
		μA: microamp. 1x10⁴ ou 0,000001 amper.	
15		Indica leitura negativa	
16	OL	OL O valor de entrada é muito alto para a faixa	
		selecionada.	

Operação de Medição A. Medindo Tensão DC

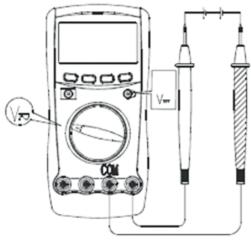
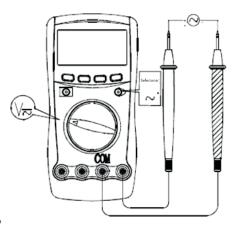


Figura 3

⚠ Aviso

Para evitar danos causados por choque elétrico ao Medidor, favor não tentar medir tensões acima de 1000V DC/750VAC rms, apesar de ser possível obter leituras.


As faixas de Tensão DC são: 400,0mV, 4,000V, 40,00V 400,0V e 1000V; Para medir tensão DC, conecte o Medidor da seguinte maneira:

- 1. Insira a ponta de prova vermelho no terminal Hz $V\Omega$ e a ponta de prova preto no terminal COM.
- 2. Ajuste o interruptor rotativo em V≂ medição DC é padrão ou pressione o botão AZUL para selecionar o modo de medição DC.
- 3. Conecte as pontas de prova com o objeto a ser medido. O valor medido aparece no visor.

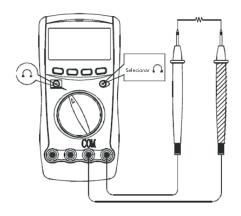
Observação:

- Em cada faixa, o Medidor possui uma entrada de impedância de $10M\Omega$. Esse efeito de carregamento pode causar erros de medição em circuitos de alta impedância. Se a impedância de circuito for menor ou igual a $10k\Omega$, o erro é insignificante (0,1% ou menos).
- Quando a medição de tensão DC for completada, desconecte a conexão entre as pontas de prova e o circuito sendo testado e remova as pontas de prova dos terminais de entrada do Medidor.

B. Medindo Tensão AC

Aviso

Para evitar danos causados por choque elétrico a você ou ao Medidor, favor não tentar medir tensões acima de 1000V DC / 750VAC, apesar de ser possível obter leituras. As faixas de Tensão AC são: 4,000V, 40,00V 400,0V e 750,0V. Para medir tensão AC, conecte o Medidor da sequinte


maneira:

- 1. Insira a ponta de prova vermelho no terminal Hz $V\Omega$ e a ponta de prova preto no terminal COM.
- 3. Conecte as pontas de prova com o objeto sendo medido. O valor medido aparece no visor.

Observação:

- Em cada faixa, o Medidor possui uma entrada de impedância de $10M\Omega$. Esse efeito de carregamento pode causar erros de medição em circuitos de alta impedância. Se a impedância de circuito for menor ou igual a $10k\Omega$, o erro é insignificante (0,1% ou menos).
- Quando a medição de tensão AC for completada, desconecte a conexão entre as pontas de provas e o circuito sendo testado e remova as pontas de provas dos terminais de entrada do Medidor

C. Medindo Resistência

Aviso

Para evitar danos ao Medidor ou aos dispositivos sob teste, desconecte a alimentação do circuito e descarregue todos os capacitores de alta tensão antes de medir a resistência.

As faixas de resistência são: $400,0\,\Omega$, $4,000k\,\Omega$, $40,00k\,\Omega$, $400,00k\,\Omega$, $4,000M\,\Omega$ e $40,00M\,\Omega$. Para medir a resistência, conecte o Medidor da seguinte maneira:

- 1. Insira a ponta de prova vermelho no terminal Hz V Ω e a ponta de prova preto no terminal COM.
- 2. Ajuste o interruptor rotativo em Ω -1) \rightarrow + resistência de medição (Ω) é o padrão ou pressione o botão AZUL para selecionar o modo Ω .

Observação:

- As pontas de prova podem acrescentar erro de 0,1 Ω a 0,2 Ω à medição de resistência. Para obter leituras de precisão ao medir baixa resistência, que é o alcance de 400,0 Ω faça um curto-circuito nas pontas de prova, e pressione o botão REL Δ para subtrair automaticamente o valor do curto-circuito da leitura.
- Se a leitura Ω com as pontas de prova encurtados não for \leqslant 0,5, verifique a ocorrência de pontas de prova frouxas, função incorreta selecionada ou função de Retenção de Dados (HOLD) ativada.
- Para a medição de alta resistência (>1M Ω), é normal levar alguns segundos para obter uma leitura estável.
- O "OL" no visor indica circuito aberto ou valor do resistor testado é maior do que a faixa máxima do Medidor.
- Quando a medição de resistência for completada, desconecte a conexão entre as pontas de prova e o circuito sendo testado e remova as pontas de prova dos terminais de entrada do Medidor.

D. Testando Continuidade

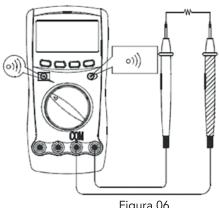


Figura 06

Aviso Aviso

Para evitar danos ao Medidor ou aos dispositivos sob teste, desconecte a alimentação do circuito e descarregue todos os capacitores de alta tensão antes de medir a continuidade.

Para medir a continuidade, conecte o Medidor da seguinte maneira:

- 1. Insira a ponta de prova vermelho no terminal Hz V Ω e a ponta de prova preto no terminal COM.
- 2. Ajuste o interruptor rotativo em Ω•1)→+ e pressione o botão AZUL para selecionar •1) modo de medição.
- 3. O alarme dispara se a resistência de um circuito sendo testado for menor do que aproximadamente 70Ω .

Observação:

- O visor exibe "OL" indicando que o circuito sendo testado está aberto.

- Quando o teste de continuidade for completado, desconecte a conexão entre as pontas de prova e o circuito sendo testado e remova as pontas de prova dos terminais de entrada do Medidor.

E. Testando Díodo

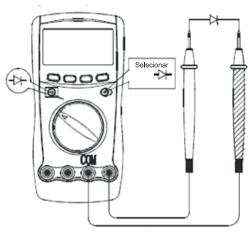
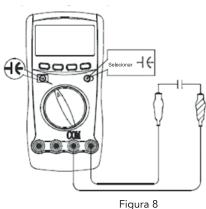


Figura 07

⚠ Aviso

Para evitar danos ao Medidor ou aos dispositivos sob teste, desconecte a alimentação do circuito e descarregue todos os capacitores de alta tensão antes de testar o díodo.

Use o teste de díodo para verificar díodos, transistores, e outros dispositivos semicondutores. O teste de díodo envia a corrente através da junção semicondutora, depois mede a queda de tensão na junção. Uma boa junção de silício cai entre 0,5 e 0,8V.


Para testar o díodo fora de um circuito, conecte o Medidor da seguinte maneira:

- 1. Insira a ponta de prova vermelho no terminal Hz $V\Omega$ e a ponta de prova preto no terminal COM.
- 3. Para leituras de queda de tensão à diante em qualquer componente semicondutor, coloque a ponta de prova vermelho no ânodo do componente e coloque a ponta de prova preto no cátodo do componente. O valor medido aparece no visor.

Observação:

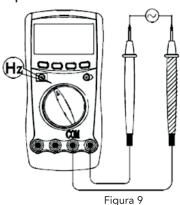
- Num circuito, um bom díodo deverá ainda produzir leitura de queda de tensão à diante de 0,5V a 0,8V; porém, a leitura de queda de tensão contrária pode variar dependendo da resistência de outros percursos entre pontas de prova.
- Conecte as pontas de prova aos terminais adequados conforme explicado acima para evitar exibição de erros. O visor exibirá "OL" indicando circuito aberto ou conexão de polaridade errada.
- A unidade de díodo é Volt (V), exibindo o valor de conexão positiva de queda de tensão.
- Quando o teste de díodo for completado, desconecte a conexão entre as pontas de prova e o circuito sendo testado e remova as pontas de prova dos terminais de entrada do Medidor.

F. Medindo Capacitância

rigi

⚠ Aviso

Para evitar danos ao Medidor ou aos dispositivos sob teste, desconecte a alimentação do circuito e descarregue todos os capacitores de alta tensão antes de medir a capacitância. Utilize a função de Tensão DC para confirmar que o capacitor esteja descarregado.


As faixas de capacitância do Medidor são: 40,00nF, 400,0nF, 4,000 $\,\mu$ F, 40,00 $\,\mu$ F, e 100,0 $\,\mu$ F. Para medir a capacitância, conecte o Medidor da seguinte maneira:

- 1. Insira a ponta de prova vermelho no terminal $Hz\ V\Omega$ e a ponta de prova preto no terminal COM.
- 3. Conecte as pontas de prova ao objeto sendo medido. O valor medido é exibido no visor.

Observação:

- Para testar os capacitores eletrônicos com polaridade, coloque a ponta de prova vermelho ao ânodo e a ponta de prova preto ao cátodo.
- Para minimizar o efeito de capacitância armazenado nas pontas de prova, a ponta de prova deverá ser o mais curto possível. Para medir um pequeno valor de capacitância, utilize o modo REL para remover a capacitância da ponta de prova. A tensão remanescente, impedância isolada e absorção dielétrica do capacitor poderão causar o erro de medicão.
- Leva-se mais tempo ao testar um valor de capacitor mais elevado, o tempo de teste é de aproximadamente 15 segundos numa faixa de 100nF.
- O visor exibe "OL" indicando que o capacitor testado está em curto ou excede a faixa máxima.
- Quando a medição de capacitância for completada, desconecte a conexão entre as pontas de prova e o circuito sendo testado e remova as pontas de prova dos terminais de entrada do Medidor.

G. Medindo Frequência

A faixa de medição é de 10Hz a 10MHz. Para medir a frequência, conecte o Medidor da seguinte maneira:

- 1. Insira a ponta de prova vermelho no terminal Hz V Ω e a ponta de prova preto no terminal COM.
- 2. Ajuste o interruptor rotativo para Hz; medição de frequência (Hz) é padrão ou pressione Hz % para selecionar modo de medição Hz.
- 3. Conecte as pontas de prova ao objeto sendo medido. O valor medido é exibido no visor.

Observação

- Quando a medição de frequência for completada, desconecte a conexão entre as pontas de prova e o circuito sendo testado e remova as pontas de prova dos terminais de entrada do Medidor.

Ajuste o interruptor rotativo em **V**≂

Depois pressione HZ% para selecionar modo de medição Hz para obter valor de frequência.

Quando o escopo de entrada ≤ 30V rms, favor seguir o passo 2 acima, realizando a medição.

Ao fazer medição de freqüência à faixa de corrente ou tensão, favor levar em consideração a tabela de exigência de sinal abaixo:

Faixa	Exigência de Sinal	Faixa de Frequência
	≥1,0V	5Hz~10kHz
₹ 40V	≥5,0V	5Hz~20kHz
≂400V	≥45V	45Hz~4kHz
1000V/~750V	≥420V	45Hz~1,6kHz
≂ mA	≥45mA	5Hz~5KHz
≂ A	≥4A	45Hz~1kHz

H. Medindo Ciclo de Operação (duty cycle) (ver Figura 9)

A faixa de medição de ciclo de operação é: 0,1%~99,9%. Para medir o ciclo de operação (duty cycle), faça o seguinte:

- 1. Ajuste o Medidor para medir frequência.
- 2. Para selecionar ciclo de operação (duty cycle), pressione Hz % até que o símbolo de % seja exibido no visor.
- 3. Conecte as pontas de prova ao objeto sendo medido. O valor medido é mostrado no visor.

Observação

- O visor exibe 000,0% indicando se o sinal de entrada está em nível alto ou baixo.
- Quando a medição de ciclo de operação (duty cycle) for completada, desconecte a conexão entre as pontas de prova e o circuito sendo testado e remova as pontas de prova dos terminais de entrada do Medidor.
- Para obter uma leitura estável ao medir escopo de entrada > 30V rms sinal de freqüência:

Ajuste o interruptor rotativo em 🗸

Depois pressione Hz % para selecionar modo de medição % para obter o valor do ciclo de operação (duty cycle).

Quando o escopo de entrada ≤ 30V rms, favor seguir o passo 2 acima, realizando a medição.

I. Medindo Temperatura

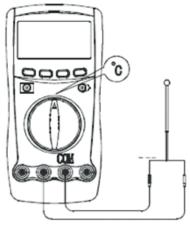
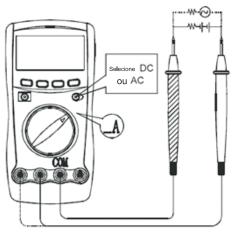


Figura 10

A faixa de medição de temperatura é: -40°C ~ 1000°C. Para medir a temperatura, conecte o Medidor da seguinte maneira:


- 1. Insira a sonda de temperatura ponta vermelha no terminal μA mA $^{\circ}C$ e a ponta preta da sonda de temperatura no terminal COM.
- 2. Ajuste o interruptor rotativo para °C.
- 3. Coloque a sonda de temperatura no objeto sendo medido. O valor medido é exibido no visor.

Observação

- O medidor exibe automaticamente o valor de temperatura interna do Medidor quando não há conexão de sonda de temperatura.

- A sonda de temperatura de contato só poderá ser usada até 250°C. Para qualquer medição acima disso, a sonda de temperatura do tipo haste deverá ser usada.
- Quando a medição de temperatura for completada, remova a sonda de temperatura do objeto medido, e desconecte a sonda dos terminais de entrada do Medidor.

J. Medindo Corrente DC/AC

Aviso

Nunca tente realizar uma medição de corrente dentro de circuito onde a tensão de circuito aberto entre terminais e o aterramento seja maior do que 250V.

Se o fusível queimar durante a medição, o Medidor pode ser danificado ou o próprio operador pode se machucar.

Utilize terminais, funções e faixas adequadas para a medição.

Quando as pontas de prova estiverem conectadas aos atuais terminais, não os coloque paralelamente em qualquer circuito.

Três posições atuais em torno do interruptor rotativo:

$$\mu A \overline{\sim}$$
, $m A \overline{\sim} e A \overline{\sim}$.

O μ A $\overline{\sim}$ possui uma faixa de 400,0 μ A e 4000 μ A, com auto-escala;

O mA $\overline{\sim}$ possui uma faixa de 40,00mA e 400,0mA, com auto-escala; Uma posição A $\overline{\sim}$ possui uma faixa de 4,000A e 10,00A, com auto-escala.

Para medir a corrente, faça o seguinte:

- 1. Desligue o circuito. Descarregue todos os capacitores de alta tensão.
- Insira a ponta de prova vermelho no terminal μA mA °C ou terminal 10A e a ponta de prova preto no terminal COM.
 Use o terminal 10A e faixa A se o valor de corrente a ser testado for desconhecido.
- 3. Ajuste o interruptor rotativo para $\mu A \overline{\sim}$, $mA \overline{\sim}$, ou $A \overline{\sim}$.
- Ó padrão do Medidor é o modo de corrente DC. Para comutar entre os modos de corrente DC e AC, pressione o botão AZUL.
 A corrente AC é exibida como valor RMS de onda senoidal (resposta de valor médio).
- 5. Interrompa o percurso da corrente a ser testada. Conecte a ponta de prova vermelho ao lado mais positivo da interrupção e a ponta de prova preto ao lado mais negativo da interrupção.
- Ligue o circuito.
 O valor medido aparecerá no visor.

Observação:

- Por questões de segurança, cada tempo de medição para alta corrente deverá ser menor do que 10 segundos e o tempo de intervalo entre 2 medições deverá ser maior do que 15 minutos.
- Quando a medição de corrente for completada, desconecte a conexão entre as pontas de prova e o circuito sendo testado, e remova as pontas de prova dos terminais de entrada do Medidor.

Operação do Modo de Retenção (HOLD)

∧ Aviso

Para evitar a possibilidade de choque elétrico, não utilize o modo de Retenção (HOLD) para determinar se os circuitos estão sem alimentação. O modo de Retenção não irá capturar leituras instáveis.

O modo de Retenção é aplicável a todas as funções de medição,

Pressione o botão HOLD H para entrar no modo de

Retenção; o Medidor emite um bip.

Pressione o botão HOLD Hovamente ou RANGE (Faixa) ou Hz % ou coloque o interruptor rotativo em sair do modo de retenção; o Medidor emite um bip.

No modo de Retenção **H** é exibido.

O Uso do Modo de Valor Relativo

O modo REL se aplica a todas as funções de medição exceto medição de ciclo de operação (duty cycle)/frequência. Subtrai um valor mantido do valor da medição atual e exibe o resultado.

Por exemplo, se um valor mantido é 20,0V e o valor de medição atual é 22,0V, a leitura seria 2,0V. Se um novo valor de medição é equivalente ao valor mantido então a exibição é 0,0V.

Para entrar ou sair do modo REL:

Utilize o interruptor rotativo para selecionar a função de medição antes de selecionar **REL** Δ . Se a função de medição mudar manualmente após **REL** Δ ser selecionado, o Medidor sai do modo REL.

Pressione **REL** Δ para entrar no modo REL, escala automática desliga, exceto sob modo de teste de capacitância, a faixa de medição atual é travada e exibe "0" como o valor armazenado.

Pressione REL Δ novamente ou gire o interruptor rotativo para resetar o valor armazenado e sair do modo REL.
Pressionar RETER $\stackrel{\textstyle f H}{ }$ no modo REL faz com que o Medidor pare de atualizar, Pressionar RETER $\stackrel{\textstyle f H}{ }$ novamente retorna à atualização.
Botão de LIGA/DESLIGA (POWER)
Este é um botão de auto-travamento usado para ligar ou desligar o Medidor.

Botão AZUL

É utilizado para selecionar função de medição exigida quando há mais de uma função em uma posição do interruptor rotativo,

Ligando a Iluminação de Fundo do Visor

Para evitar perigos provenientes de leituras incorretas sem luz suficiente ou pouca visibilidade, favor usar a função de Iluminação de Fundo do visor.

Pressione RETER (HOLD) H por mais de 2 segundos para ligar a lluminação de Fundo de visor.

Pressione e segure RETER (HOLD) H novamente por mais de 2 segundos para desligar a lluminação de Fundo do visor, caso contrário ficará ligada continuamente.

Desligamento Automático

Para preservar a vida útil da bateria, o Medidor se desliga automaticamente se você não girar o interruptor rotativo ou pressionar qualquer botão por cerca de 30 minutos.

Para desativar a função de Modo de Espera, pressione o botão AZUL enquanto estiver ligando o Medidor.

Especificações Gerais

- Tensão Máxima entre qualquer Terminal e Aterramento: 1000V.

 \triangle Proteção com Fusíveis para terminal de entrada μA mA °C: fusível de vidro, 0,5A, 250V, tipo rápido, Φ 5x20mm.

↑ Proteção com Fusível para terminal de entrada 10A: fusível de vidro 10A, 250V, tipo rápido , ф 5x20mm.

- Exibição Máxima: 3999 contagens
- Velocidade de Medição: Atualizações 3 vezes/segundo.
- Temperatura:

Operacional: 0° C ~ $+40^{\circ}$ C (32° F~ 104° F)

Armazenamento: -10° C $\sim +50^{\circ}$ C $(14^{\circ}$ F $\sim 122^{\circ}$ F)

- Umidade relativa: <75% @0°C~30°C, <50% @31°C~40°C;
- Altitude: Operacional: 2000 m.
- Armazenamento: 10000 m.
- Bateria: Uma bateria de 9V (NEDA 1604 ou 6F22 ou 006P).

Indicação de bateria com carga baixa: visor exibe 👖

- Dimensões: 177 x 85 x 40 mm.
- Peso: Aprox. 300g (incluindo bateria)
- Segurança/Conformidade: IEC 61010 CAT.III 1000V, CAT.IV 600V e Duplo Isolamento.
- Certificações: CE, UL & CUL

Especificações de Exatidão

Exatidão: ± (% leitura + dígitos).

A Temperatura de funcionamento: $23^{\circ}\text{C} \pm 5^{\circ}\text{C}$ e Umidade

relativa: < 75%.

Coeficiente de temperatura: 0,1 x (Exatidão especificada)

/1°C

A. Tensão DC

Faixa	Resolução	Exatidão	Proteção de Sobrecarga
400mV	0,1mV	±(0,8%+3)	
4V	1mV		1000V DC
40V	10mV	±(0,8%+1)	750V AC rms
400V	100mV		contínuo
1000V	1V	±(1%+3)	

Notas:

- Impedância de entrada $\geq 10M\Omega$.

B. Tensão AC

Faixa	Resolução	Exatidão	Proteção de Sobrecarga
4V	1mV		1000V DC
40V	10mV	±(1%+5)	750V AC rms
400V	100mV		contínuo
750V	1V	±(1,2%+5)	Continuo

Notas:

- Impedância entrada ≥ 10MΩ.
- Exibe valor RMS de onda senoidal (resposta de valor médio).
- Resposta de freqüência 40 Hz~400Hz.

C. Resistência

Faixa	Resolução	Exatidão	Proteção de Sobrecarga
400Ω	0,1Ω	Medir em modo REL ± (1,2%+2)	
4kΩ	1Ω		
40kΩ	10Ω	± (1%+2)	
400kΩ	100Ω		1000Vp
4ΜΩ	1kΩ	± (1,2%+2)	
40ΜΩ	10kΩ	± (1,5%+2)	

Notas Tensão de circuito aberto de aproximadamente 0,45V.

D. Teste de Continuidade

Faixa	Resolução	Exatidão	Proteção de Sobrecarga
400,0Ω	0,1Ω	Aproximadamente $\leq 70 \ \Omega$	1000Vp

Notas:

- O alarme dispara continuamente.
- Tensão de circuito aberto aproximadamente 0,45V.

E Teste de Díodo

Faixa	Resolução	Proteção de Sobrecarga
Díodo	1mV	1000Vp

Notas:

- Tensão de circuito aberto aproximadamente 1,48V.
- Mostra leitura aproximada de queda de tensão frontal no visor de 0,5V~ 0,8V.

F. Capacitância

Faixa	Resolução	Exatidão	Proteção de Sobrecarga
40nF	10pF	Medir em modo REL ± (3%+10)	
400nF	100pF		
4μF	1nf	± (3%+5)	1000Vp
40μF	10nf		
100μF	100nf	± (4%+5)	

G. Ciclo de Operação (duty cycle)/Freqüência

Faixa	Resolução	Exatidão	Proteção de Sobrecarga
10Hz~10MHz		±(0,1%+3)	qV0001
0,1%~99,9%	0,1%		100076

Notas:

- Faixa de 10Hz~10MHz:
 - \leq 1MHz:300mV rms \leq sensitividade de entrada \leq 30V rms; >1MHz:600mV rms \leq sensitividade de entrada \leq 30V rms:
- 0,1%~99,9%:

Leitura possui apenas propósito de referência.

H. Temperatura

Faixa	Resolução	Exatidão	
		-40°C~0°C	±(3%+4)
-40°C∼ 1000°C	1°C	0°C~400°C	±(1%+3)
		400°C~1000°C	±(2%+10)

Proteção de Sobrecarga:

Fusível de vidro de 0,5A, 250V, tipo rápido Φ 5x20mm.

I. Corrente DC

Faixa	Resolução	Exatidão	Proteção de Sobrecarga
400μΑ	0,1μΑ	±(1%+2)	0,5A, 250V, fusível de vidro tipo rápido Ф 5x20mm.
4000μΑ	1μΑ		
40mA	0,01mA	±(1,2%+3)	
400mA	0,1mA	±(1,2/0+3)	
4A	0,001A	±(1,5%+5)	10A, 250V. Fusível de vidro tipo rápido
10A	0,01A		Ф _{5х20mm}

Notas:

Faixa 4A e 10A:

 Para medição contínua ≤ 10 segundos e intervalo maior do que 15 minutos.

^{*} A sonda de temperatura de contato se limita a valores abaixo de 250°C.

J. Corrente AC

Faixa	Resolução	Exatidão	Proteção de Sobrecarga
400μΑ	0,01μΑ	±(1,5%+5)	Fusível de vidro tipo rápido, 0,5A, 250V, \$\Phi_5x20mm.
4000μΑ	1μΑ	±(1,5 /6+5)	
40mA	0,01mA		
400mA	0,1mA	±(2%+5)	
4A	0,001A	±(2,5%+5)	Fusível de vidro tipo rápido 10A,
10A	0,01A		250V, Φ _{5×20mm} .

Notas:

- Resposta de frequência: 40Hz~400Hz Exibe valor de RMS de onda senoidal (resposta de valor médio).
- Faixa 4A e 10A:

Para medição contínua ≤ 10 segundos e intervalo maior do que 15 minutos.

Manutenção

Esta seção oferece informações básicas de manutenção incluindo instruções de troca de bateria e fusível.

Aviso

Não tente reparar ou consertar seu Multímetro a não ser que seja qualificado para realizar o serviço e possui a calibração, teste de desempenho e informações de serviço relevantes.

Para evitar choque elétrico ou danos ao Multímetro, não deixe entrar água no gabinete.

A. Serviço Geral

- Limpe o gabinete periodicamente com um pano úmido. Não utilize abrasivos ou solventes.
- Limpar os terminais de entrada com cotonete de algodão, uma vez que a sujeira ou umidade nos terminais podem afetar as leituras.
- Desligar o Medidor quando não estiver em uso.

- Retirar a bateria quando n\u00e3o for usado por um longo per\u00e1odo.
- Não utilize ou armazene o Medidor em local úmido, de alta temperatura, explosivo, inflamável e de forte campo magnético.

B. Testando os Fusíveis

⚠ Aviso

Para evitar choque elétrico ou lesão corporal, remova as pontas de prova e qualquer sinal de entrada antes de trocar a bateria ou fusível.

Para prevenir danos instale APENAS fusíveis de substituição com amperagem, tensão, e tempo de resposta idênticos.

Para testar o fusível:

- 1. Ajuste o interruptor rotativo para Ω o botão AZUL para selecionar Ω)
- 2. Plugue uma ponta de prova no terminal Hz V Ω e toque a sonda no terminal 10A.
- Se o Medidor emitir um bip, o fusível está bom.

Se o visor exibir "OL", troque o fusível e teste novamente.

Se o visor exibir qualquer outro valor, entre imediatamente em contato com o seu revendedor.

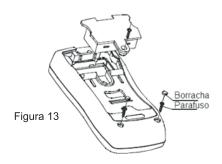
Se o Medidor não funcionar enquanto estiver tudo certo com o fusível, envie para o seu revendedor para que seja reparado.

C. Trocando a bateria

Aviso

Para evitar falsas leituras, que podem desencadear possível choque elétrico ou lesão corporal, substitua a bateria assim que o indicador de bateria com ca baixa aparecer. Assegure-se de que as pontas de prova estejam desconectadas do circuito sendo testado antes de abrir o fundo do gabinete.

Para trocar a bateria:


- Pressione LIGAR/DESLIGAR (POWER) para desligar o Medidor e remova todas as conexões dos terminais de entrada.
- 2. Remova o parafuso do compartimento da bateria, e separe o compartimento de bateria do fundo do gabinete.
- 3. Remova a bateria do compartimento.
- 4. Substitua a bateria por uma bateria 9V nova (NEDA1604, 6F22 ou 006P)
- 5. Junte o fundo do gabinete e compartimento de bateria, e reinstale o parafuso.

D. Trocando os Fusíveis

Aviso

Para evitar choque elétrico ou explosão, ferimento ou dano ao Medidor, utilize fusíveis especificados SOMENTE de acordo com o seguinte procedimento.

Para trocar o fusível do Medidor:

- Pressione LIGAR/DESLIGAR (POWER) para desligar o Medidor e remover todas as conexões dos terminais de entrada.
- 2. Remova o parafuso do compartimento da bateria, e separe o compartimento de bateria do fundo do gabinete.
- 3. Remova os 2 pés de borracha e 2 parafusos do fundo do gabinete.
- 4. Remova o fusível elevando cuidadosamente uma ponta, e o retire de seu suporte.
- 5. Instale SOMENTE fusíveis com o tipo e especificação idênticos conforme abaixo e assegure-se de que o fusível esteja fixado firmemente em seu suporte.

Fusível 1: Fusível de vidro 0,5A, 250V, tipo rápido

Ф 5x20mm.

Fusível 2: Fusível de vidro 10A, 250V, tipo rápido

Φ 5x20mm.

- 6. Encaixe novamente o compartimento de bateria e tampa do gabinete, e reinstale o parafuso.
- 7. Encaixe novamente o fundo do gabinete, e reinstale os parafusos e pés de borracha.

A substituição dos fusíveis raramente é necessária. Um fusível queimado sempre resulta de operação inadequada.

A INCOTERM garante a qualidade deste produto e firma o compromisso do atendimento em garantia e assistência técnica, bem como a troca incondicional do mesmo caso sejam detectados e comprovados defeitos de fabricação. Esta garantia é válida pelo período de 01 (um) ano a partir da data da compra e mediante apresentação de nota fiscal. Qualquer intenção de reparo por pessoas não autorizadas implicará na perda da garantia.

Este manual de instruções está sujeito a mudanças sem aviso prévio.

Av. Eduardo Prado, 1670 - Porto Alegre/RS | CEP 91751-000 - CNPJ 87.156.352/0001-19

Tel.: 51 - 3245.7100 | Fax.: 51 - 3248.1470 - vendas@incoterm.com.br

www.incoterm.com.br

